If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9y^2+57y+44)=0
We get rid of parentheses
9y^2+57y+44=0
a = 9; b = 57; c = +44;
Δ = b2-4ac
Δ = 572-4·9·44
Δ = 1665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1665}=\sqrt{9*185}=\sqrt{9}*\sqrt{185}=3\sqrt{185}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-3\sqrt{185}}{2*9}=\frac{-57-3\sqrt{185}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+3\sqrt{185}}{2*9}=\frac{-57+3\sqrt{185}}{18} $
| w^2-12w+23=0 | | 11j-10j+2j-j=8 | | 2x+3=4x+5= | | 8x-1=13+5x | | 17v+2v-7v-7v-2v=6 | | 21=w/5+16 | | -7-3x=8+x | | 0.75(3000+x)=150+0.09x | | v/2-17=20 | | 5m(m-7)=0 | | 5j-2j-j=12 | | 4x-1=3x+1= | | 5x=+2=7x-4 | | (2x-15)+11=180 | | 2z−-2=8 | | 2^3-x=4^1-x | | 5n2+6n-27=0 | | 3^x=0.0003 | | 3(u+4)-5u=20 | | 233=281-u | | -x+256=133 | | 253=209-w | | 1/5x-1/2=21/2 | | 16w=63+7w | | 2x-15=x=5 | | 2x+8+6x=14x+12 | | 9u+15=39 | | 9a-2a=2+24 | | -12x-33=0 | | 14+5=-23x+-85 | | 2^(2x+3)-33(2x)+4=0 | | 9a-24=2+2a |